TruSight® Tumor 15 Workflow on the MiniSeq™ System

Illumina Custom Protocol

This checklist supports the following workflow choices.

Sequencing Instrument:	MiniSeq System
Setup Option	Local Run Manager
Library Preparation Kit:	TruSight Tumor 15
Indexing:	Dual Indexing
Reagent Kits:	MiniSeq Kit
Analysis Workflow:	TruSight Tumor 15
Analysis Software:	Local Run Manager

MiniSeq sequencing using TruSight Tumor 15 libraries.

Set Run Parameters

- $\Box 1$ Log in to Local Run Manager.
- □ 2 Click **Create Run**, and select **TruSight Tumor 15**. □ 2
- \Box 3 Enter a run name that identifies the run.
- \Box 4 [Optional] Enter a run description.
- $\Box 5$ Enter a unique sample ID.
- $\Box 6$ [Optional] Enter a sample description.
- \Box 7 Enter index adapters for Mix A.
- $\square 8$ Enter index adapters for Mix B.
- 9 Click Save Run.

Amplify and Tag Targets

- $\Box 1$ Quantify the sample DNA.
- \Box 2 Dilute each sample DNA to 2 ng/µl in a final volume of 12.5 µl.
- □ 3 Combine the following reagents in separate microcentrifuge tubes to create PCR master mixes for TPA and TPB.

PCR Component	Per Well	Per 24 Samples
TTM	5.875 µl	141 µl
TPA or TPB	6.25 µl	150 µl
TTE	0.375 μl	9 µl

- $\Box 4$ Pipette to mix.
- $\Box 5$ Add 10 µl of each PCR master mix.
 - Master Mix A–Rows A and C
 - Master Mix B–Rows B and D
- $\Box 6$ Add 5 µl of 2 ng/µl DNA.
 - Samples 1–12–Rows A and B
 - Samples 13–24—Rows C and D
- \Box 7 Pipette to mix.
- $\square 8$ Centrifuge at 1000 × g for 1 minute.
- □9 Immediately place on a thermal cycler and run the TST15 PCR1 program.

SAFE STOPPING POINT

If you are stopping, seal the plate and store at 2°C to 8°C for up to 3 days. Alternatively, leave on the thermal cycler overnight.

Illumina Custom Protocol

Index Targets

- $\Box 1$ Arrange Index 1 (i7) adapters in the top row.
- \Box 2 Arrange Index 2 (i5) adapters in rows A–B.
- \square 3 Place the plate on the TruSeq Index Plate Fixture. \square 3
- \Box 4 For samples 1–12, add 4 µl of each Index 2 (i5) adapter across rows A and B.
- \Box 5 For samples 1–12, add 4 µl of each Index 1 (i7) adapter (R701–R709, R711–R712, R749) to each column of rows A and B.
- $\square 6$ For samples 13–24, add 4 μ l of each Index 2 (i5) adapter across rows C and D.
- \Box 7 For samples 13–24, add 4 µl of each Index 1 (i7) adapter (R725–R736) to each column of rows C and D.
- $\square 8$ Add 27 µl TAM.
- \Box 9 Pipette to mix.
- \Box 10 Centrifuge at 1000 × g for 1 minute.
- □11 Immediately place on a thermal cycler and run the TST15 PCR2 program.

SAFE STOPPING POINT

If you are stopping, seal the plate and store at -25°C to -15°C for up to 7 days.

- Clean Up Libraries
- $\Box 1$ Centrifuge at 1000 × g for 1 minute.
- \Box 2 Add 40 µl SPB of a new midi plate.
 - 3 Transfer 45 μl supernatant from the PCR plate to the midi plate.
- $\Box 4$ Shake at 1800 rpm for 5 minutes.
- $\Box 5$ Incubate at room temperature for 5 minutes.
- $\square 6$ Place on a magnetic stand until beads bind to the magnet.
- \Box 7 Remove and discard all supernatant.
- $\square 8$ Wash 2 times with 200 µl 80% EtOH.
- Using a 20 μl pipette, remove residual 80% EtOH.
- $\Box 10\,$ Air-dry on the magnetic stand for 5 minutes.
- \Box 11 Add 32 µl RSB.
- \Box 12 Shake at 1800 rpm for 2 minutes.
- \Box 13 Incubate at room temperature for 2 minutes.
- \Box 14 Place on a magnetic stand until liquid is clear.
- $\Box 15\,$ Transfer 30 μl supernatant to the PLP plate.
- \Box 16 Centrifuge at 1000 × g for 1 minute.
 - SAFE STOPPING POINT
 - If you are stopping, seal the plate and store at -25° C to -15° C for up to 2 months.

Check Libraries

- $\Box 1$ Quantify the library.
- \Box 2 Calculate the volume of RSB required to adjust the library concentration to 5 ng/µl.
- □ 3 Add the required volume of RSB to the NLP plate.
- $\Box 4$ Transfer 8 µl of each library to the NLP plate.
- □5 Run an aliquot of each normalized library on either of the following methods:
 - $\blacktriangleright 15~\mu l$ on a 2% agarose gel
 - $ightarrow 1~\mu l$ on a Bioanalyzer using a DNA 1000 chip

SAFE STOPPING POINT

If you are stopping, seal the plate and store at -25° C to -15° C for up to 14 days.

Illumina Custom Protocol

Pool Libraries

- \Box 1 Centrifuge the NLP plate at 1000 × g for 1 minute. \Box 1 Remove the reagent cartridge from -25°C to -15°C
- $\Box 2$ Transfer 4 µl of each library to the PNL tube.
- \Box 3 Vortex to mix, and then centrifuge briefly.
- \Box 4 Add 41 µl RSB to the DNL tube.
- $\Box 5$ Transfer 9 µl from the PNL tube to the DNL tube.

Prepare Consumables

- 1 Remove the reagent cartridge from -25°C to -15°C storage.
- □ 2 Thaw reagents in a room temperature water bath for 90 minutes.
- \Box 3 Invert the cartridge 5 times to mix reagents.
- $\Box 4$ Gently tap on the bench to reduce air bubbles.
- □5 Remove a new flow cell package from 2°C to 8°C storage.
- □6 Set the unopened flow cell package aside at room temperature for 30 minutes.
- \Box 7 Remove the flow cell from the foil package and flow cell container.
- $\square 8$ Clean the glass surface of the flow cell with a lint-free alcohol wipe.
- \Box 9 Dry with a lint-free lens cleaning tissue.

Denature, Dilute, and Load Libraries

- $\Box 1$ Dilute 100 μl 1 N NaOH to 1 ml 0.1 N NaOH.
- $\Box 2$ Invert the tube several times to mix.
- □ 3 Thaw the Hybridization Buffer at room temperature.
- $\Box 4$ Vortex briefly before use.
- $\Box 5$ Thaw the RSB at room temperature.
- $\square 6$ Transfer 25 µl of the 4 nM library pool to a new microcentrifuge tube.
- \Box 7 Add 75 µl RSB to dilute to 1 nM.
- $\square 8$ Vortex briefly and then centrifuge at $280 \times g$ for 1 minute.
- \Box 9 Combine 5 µl library with 5 µl 0.1 N NaOH.
- \Box 10 Vortex briefly and then centrifuge at 280 × g for 1 minute.
- \Box 11 Incubate at room temperature for 5 minutes.
- □12 Add 5 µl 200 mM Tris-HCl, pH 7.0.
- \Box 13 Vortex briefly and then centrifuge at 280 × g for 1 minute.
- $\Box 14\,$ Add 985 μl of prechilled Hybridization Buffer.
- \Box 15 Vortex briefly and then centrifuge at 280 × g for 1 minute.
- $\Box 16\,$ Transfer 180 μl library to a new microcentrifuge tube.
- $\Box17\,$ Add 320 μl prechilled Hybridization Buffer.
- \Box 18 Vortex briefly and then centrifuge at 280 × g for 1 minute.
- □19 [Optional] Denature and dilute a PhiX control to 1.8 pM and a 1% spike-in to the final library.
- □20 Clean the foil seal covering reservoir **#16** using a low-lint tissue.
- \Box 21 Pierce the seal with a clean 1 ml pipette tip.
- $\Box22\,$ Add 500 μl prepared libraries into reservoir **#16**.

Thu Jan 7 15:20:55 2016 ILLUMINA PROPRIETARY

Illumina Custom Protocol

Perform a Sequencing Run

- $\Box 1$ From the Home screen, select **Sequence**.
- \Box 2 Enter your user name and password.
- □ 3 Select Next.
- $\Box 4$ Select a run name from the list of available runs.
- □5 Select Next.
- $\Box 6$ Open the flow cell compartment door.
- \Box 7 Press the release button to the right of the flow cell latch.
- $\square 8$ Place the flow cell on the flow cell stage over the alignment pins.
- \Box 9 Close the flow cell latch to secure the flow cell.
- $\Box 10\,$ Close the flow cell compartment door.
- $\Box 11$ Open the reagent compartment door.
- □12 Slide the reagent cartridge into the reagent compartment until the cartridge stops.
- □13 Remove the spent reagents bottle from the compartment.
- □14 Discard the contents and slide the empty spent reagents bottle into the compartment.
- \Box 15 Close the compartment door and select **Next**.
- \Box 16 Confirm run parameters.
- □17 Select Next.
- □18 When the automated check is complete, select **Start**.
- □19 Monitor run progress, intensities, and quality scores as metrics appear on the screen.

View Analysis Results

- □1 From the Local Run Manager dashboard, click the run name.
- \Box 2 From the Run Overview tab, review the sequencing run metrics.
- □3 [Optional] Click the **Copy to Clipboard** [■] icon for access to the output run folder.
- □4 Click the Sequencing Information tab to review run parameters and consumables information.
- □5 Click the Samples and Results tab to view the analysis report.
- □6 [Optional] Click the **Copy to Clipboard** ^I icon for access to the Analysis folder.