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Introduction
In recent years, polygenic scores have become powerful tools for 
genetic disease research, genetic testing, and clinical trials, as 
evidenced by the increasing number of related research articles 
(Figure 1). In principle, a polygenic score is a weighted sum of allele 
counts across variants, where the weight reflects the magnitude of 
association between variant alleles and a trait or disease (as defined 
in a discovery genome-wide association study (GWAS) for the trait of 
interest). While the term polygenic score can apply to any phenotype, 
it is more commonly referred to as polygenic risk score (PRS) or 
genetic or genomic risk score (GRS) when describing disease risk.1 

Historically, the number of alleles included in overall risk assessment 
have been limited, due to the relatively small size of GWAS. Genome-
wide risk scores are becoming relatively common, and the number 
of identified single nucleotide polymorphisms (SNPs) associated with 
some diseases has increased into the millions.1 PRS clinical validity, 
utility, and sophistication is likely to improve with increased interest 
from government initiatives, the pharmaceutical industry, and health 
systems, and as the scientific community continues to improve 
methods and gains access to larger scale GWAS data, carried out in 
populations of different ethnic backgrounds. 

There is great potential for PRSs to play a key role in personalized 
medicine in the future. Many common diseases with a need for 
preventive and personalized medicine have some level of heritability. 
PRSs have the potential to explain this heritability. PRSs have been 
shown to outperform conventional methods, such as family history 
analysis, for predicting risk for many diseases.2 Furthermore, it has 
been shown that for some diseases, eg, cancer and cardiovascular 
disease, a polygenic component can have a stronger effect on clinical 
risk, relative to monogenic variants. A PRS can explain a greater 
portion of the disease/trait heritability than monogenic mutations and 
can also modulate the penetrance of monogenic mutations.3, 4

This application note provides an overview of available tools and 
methods for PRS development and calculation.

PRS development process
Development of a PRS is a multistage process that begins with testing 
in a risk model predicting the phenotype of interest, which may be 
combined with other nonclinical variables. Collectively, all variables 
included in the risk model are referred to as the risk model parameters. 
After fitting procedures to select the best risk model, this model is 
validated in an independent sample. The performance of a model is 
demonstrated through risk score distribution, discrimination, predictive 
ability, and calibration (Figure 2).
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Figure 1: Number of publications with PRS or GRS—A keyword search for 
“PRS” and “GRS” in publications in the PubMed database shows the dramatic 
increase in recent years.

PRS construction

Variants included in PRS construction are selected from a discovery 
cohort. Either whole-genome sequencing (WGS) or genotyping data 
can be used. Common variants (and their effect sizes) are typically 
selected from GWAS summary statistics, which are often made 
available publicly (eg, via the NHGRI-EBI GWAS Catalog). Because 
only a small portion of the genome is analyzed during genotyping, 
uncalled variants need to be imputed based on known haplotypes. 
Imputation can include several reference panels, eg, the 1000 
Genomes Project (1KGP) and the Haplotype Reference Consortium 
(HRC). There are several commonly used imputation tools, such as 
Beagle 5.0 (or an adapted version) and Minimac. Free imputation 
servers, such as the TopMed imputation server or the Michigan 
University imputation server (General Data Protection Regulation 
(GDPR)-compliant), have imputation panels available.

The Summary Statistics of a GWAS need to undergo a variant 
selection and/or variant effects modelling to improve the predictive 
power of the PRS. Four published methods include:

1. Pruning and thresholding (P+T): This “standard” method will 
set a p-value as a threshold for SNP selection and uses informed 
linkage disequilibrium (LD) pruning to discard SNPs in LD at a set 
threshold. The Pruning method is also referred to as “Clumping” 
(or C+T) when the variant with the highest effect size is selected 
in each LD block. Both steps are arbitrary. The optimum p-value 
threshold to impose on the discovery sample depends on its 
sample size and the genetic architecture of the trait.5

Considerations for polygenic risk score 
development
Explore how polygenic risk scores are developed, from design to validation, and learn which 
additional reporting and quality aspects to consider for your research.

https://pubmed.ncbi.nlm.nih.gov/
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2. Bayesian PGS: This approach, also referred to as “LDPred,” 
can outperform P+T, particularly with large sample sizes. The 
method requires the definition of a tuning parameter (ρ), which 
is an estimate of genetic variants assumed to be causal. P-value 
thresholds are varied and multiple “LDPred risk scores” are 
calculated with the use of priors with varying fractions of markers 
with nonzero effects. A number of PGSs are calculated For C+T 
with varying ρ.6

3. Stacked clumping and thresholding (SCT): This recently 
developed method involves machine learning that combines C+T, 
least absolute shrinkage and selection operator (LASSO), and 
ridge statistical procedure for regression analysis. SCT uses per-
SNP effect sizes and p-values to perform repeated P+T/C+T over 
a four-dimensional grid of parameters (LD squared correlation, 
p-value threshold, clumping window size, and imputation quality).7

4. Meta-scoring: This approach combines multiple polygenic scores 
for a trait/disease into a meta-score (a metaGRS or metaPGS). 
The method assumes that each individual polygenic score will 
suffer, to an extent, from regression dilution bias and, therefore, 
combining them into a more powerful meta-score will reduce this 
bias. The meta-score itself is constructed as a linear (or non-linear) 
combination of individual polygenic scores, and typically includes 
those for both the target trait and related traits.2

For each method, many PRSs are built using different parameter 
values. The PRSs must then be validated. Automated quality control 
(QC) is possible with several software tools: PLINK, PRSice, LDPred.8

PRS validation

Currently, the gold standard for validation of the PRSs, developed from 
the discovery cohort, is to validate against an independent data set, 
ideally biobank-scale and inclusive of diverse ancestries.

PRS testing

The output of the validation phase is the selection of an optimal 
PRS, with the highest performance in accurately predicting the trait 
of interest (Figure 3). Finally, the external validation phase involves 
computing the PRS in an independent set of individuals or population, 
unseen by the PRS construction process, and assessing its predictive 
power to confirm its predictive performance and to minimize the 
possibility of overfitting during PRS construction.

Due to its size, the UK BioBank allows for the building of large 
independent data sets, with the caveat that the ~500K individuals in 
the UK BioBank are mainly from European descent. Moreover, most 
GWASs have been performed in European data sets, potentially 
limiting the utility of the GWAS summary statistics in other ancestries 
that are characterized by different LD patterns. This overrepresentation 
of participants of European ancestry results in PGSs having less 
optimal predictive power for other ethnic groups.9,10 Several published 
articles provide more details regarding PRS development.8–12

After a PRS for a specific trait or disease outcome has been 
established, tested, and validated, it can be used to calculate relative 
genetic risk for traits/diseases in new samples and cohorts. One 
promising application for PRSs is integration as an additional risk 
factor in absolute risk models, eg, the Breast and Ovarian Analysis of 
Disease Incidence and Carrier Estimation Algorithm (BOADICEA).
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Figure 2: PRS development overview—Development of a PRS is a multistage 
process that proceeds from initial variant selection to validation and testing of 
various possible PRSs to determine the most successful model.
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The actual score for a specific trait can be communicated in several 
ways, depending on its intended application:

• A conventional PRS reports absolute risk (eg, lifetime risk) or 
relative risk (relative to a reference population number)

• PRS results are often normalized by scaling to a mean of 0 and a 
standard deviation (SD) of 1 to facilitate interpretation (Figure 4)

• PRS interpretation for screening (eg, prostate cancer/breast 
cancer) can be done with “age-equivalent risk” (patient’s risk is 
equivalent to a person of x years old)
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Figure 4: PRS results normalized by scaling—A representative plot of PRS 
results with values distributed on the X-axis scaled to a mean of 0 with a 
standard deviation of 1. Shaded portions of the histogram represent proportions 
of the population with indicated increased risk.13

Performance reporting
In addition to a PRS result, performance metrics of the PRS should be 
reported that include:

• The hazard ratio (HR) for a trait, calculated per SD increment (one 
SD increment is associated with x HR with a p-value of y)

• The area under the receiver operating curve (AUC), also known as 
the C-statistic or C-index, which ranges from 0.5 (no discriminative 
ability) to 1 (perfect discriminative ability). C-statistics quantify 
the predictive accuracy of the PRS, relative to other PRSs or 
nongenetic predictors. A PRS has the potential to improve the 
AUC of existing risk models (eg, ASCVD, Framingham, QRISK3, 
SCORE, etc.), allowing for reclassification of average/high risk 
cases and optimizing clinical care14

• Fold increased risk in the tail (usually selected from the 80th to the 
99th percentile) of the PRS distribution compared to the remainder. 
For PRS application in common diseases, an increased risk of at 
least 3-fold can have relevant clinical applications

• Goodness-of-fit measures, such as R2 (defined as the squared 
correlation between a phenotype and a predictor of the phenotype)

• The effect of a PRS on a patient cohort can also be evaluated by 
calculating the Net Reclassification Index (NRI) to verify whether the 
addition of the new predictor to an absolute risk model results in 
differential classification of individuals across thresholds15–16

Figure 3:  Schematic representation of PRS selection process—Multiple PRSs are created during development using different methods that are then validated and 
tested to identify the most successful PRS (red box). 
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Standardized reporting
Currently, implementation of PRSs in the clinical setting is hampered 
by the lack of regulated, standardized reporting. This challenge limits 
the use, interpretation, and comparison of PRSs. The Polygenic 
Score (PGS) Catalog, a central resource of published PGSs, allows 
for methodological and data transparency. Depositing PRSs/PGSs in 
a resource such as the PGS Catalog provides a valuable resource for 
widespread adoption, standardizatrion, and improvement.

Summary
PRSs have become powerful tools for genetic disease research, 
genetic testing, and clinical trials. Development of a PRS begins with 
initial construction, followed by validation and testing to determine the 
optimal PRS. It can then be used to calculate relative genetic risk for 
diseases in new samples and cohorts.

Learn more
To learn more about polygenic risk scores, visit www.illumina.com/
areas-of-interest/complex-disease-genomics.html
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