# Machinelearning tools in TruSight<sup>™</sup> Software Suite

Empower your variant analysis and interpretation in rare disease research with integrated machine-learning tools

## illumına®

For Research Use Only. Not for use in diagnostic procedures.

#### Introduction

Whole-genome sequencing (WGS) and whole-exome sequencing (WES) using next-generation sequencing (NGS) technologies provide a high-resolution view across the entire genome. Informatics solutions streamline analysis of the vast amounts of data produced by these methods, enabling discovery of variants associated with rare diseases. However, variant interpretation requires manual curation and scientific expertise, presenting a significant bottleneck when translating the raw sequencing data into meaningful, interpretable results efficiently.

In recent years, there has been increasing development and adoption of machine-learning techniques for NGS data analysis.<sup>1</sup> To this end, TruSight Software Suite incorporates several machine-learning and artificial intelligence (AI) tools to aid with variant interpretation and prioritization (Figure 1). This application note presents an overview of these advanced tools and how they can help push variant analysis into a new frontier.

# High-powered interpretation with machine learning

TruSight Software Suite includes "plug-and-play" machine-learning tools that can be run autonomously. By incorporating these automated prioritization tools, users can quickly filter out millions of variants to focus on candidate variants of interest for efficient and informed variant interpretation and curation.

#### SpliceAl

SpliceAl is a deep residual neural network that uses input genomic sequence to predict whether each position in a pre-messenger RNA (pre-mRNA) is a splice site (donor or acceptor). Splice donors and acceptors can be separated by large genomic distances.<sup>2</sup> In contrast to other tools that only consider short nucleotide sequences around exonintron boundaries, SpliceAl evaluates 10K nucleotides of flanking sequence. This broad coverage enables accurate identification of noncoding mutations

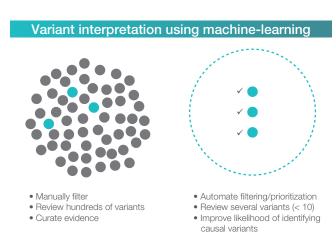



Figure 1: Variant interpretation using machine-learning— Machine-learning tools automate portions of variant analysis and interpretation, enabling users to focus on top candidates.

resulting from splicing errors that disrupt normal transcription and translation (Figure 2). For variants annotated with a SpliceAl score, SpliceAl predicts the likelihood of gain or loss of a splice donor or acceptor. This score ranges from 0.0 to 1.0, with values closer to 1.0 indicating higher confidence of an event.

#### PrimateAl

PrimateAl is a deep learning network developed for highly accurate classification of mRNA missense variants. Training the network on existing databases of human variants with limited coverage of the exome could lead to interpretation biases. To avoid bias, PrimateAl has been trained on a data set of human variants and > 300K unique missense variants collected from six nonhuman primate species, increasing overall performance in classifying pathogenic alleles (Figure 3).<sup>3</sup> For variants annotated with a PrimateAl score, PrimateAl predicts the likelihood of the variant of having a pathogenic effect. This score ranges from 0.0 to 1.0, with values closer to 1.0 indicating higher confidence of pathogenicity.

#### Emedgene

Emedgene, an Illumina partner, has developed a genomics Al engine that automates portions of the variant interpretation process to streamline data analysis. During variant filtering in TruSight Software Suite, users can filter small variants, including single nucleotide variants (SNVs) and insertions/deletions (indels) with the Emedgene tool for quick prioritization. Emedgene automatically filters and

| ^                                                                                                                                                                                                                                                          | STATUS | LINKED                   | IGV                   | POSITION                                                                            | 0                                                        | HANGE                                     | CATEGORY         | VARIANT TY                                                                   | PE                                            | OVERLAP                                                           | GENE        | TRANSCRIPT     | HGVS                                    | CONSEQUENCE      |                                                                                 | SPLICEAI                                                                         | ZYGOSITY     | INHERITED |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------|-----------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------|------------------|------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------|-------------|----------------|-----------------------------------------|------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------|-----------|
| ~                                                                                                                                                                                                                                                          |        | CH~                      | =                     | 11 : 47,343,1                                                                       | 158 C                                                    | > T                                       | Small Variant    | SNV                                                                          |                                               | 2                                                                 | MYBPC3      | NM_000256.3    | c.1227-13G>A                            | Intron Variant   |                                                                                 | 1                                                                                | Heterozygous | Father    |
| ٦.                                                                                                                                                                                                                                                         |        | сн∽                      | -                     | 1:1,041,200                                                                         | c                                                        | > T                                       | Small Variant    | SNV                                                                          |                                               | 1                                                                 | AGRN        | NM_198576.3    | c.755C>T p.(Thr252Ile)                  | Missense Variant |                                                                                 | 0.1                                                                              | Heterozygous | Father    |
| ۹.<br>۲                                                                                                                                                                                                                                                    |        | CHV                      | =                     | 1:1,051,352                                                                         |                                                          | > A                                       | Small Variant    | SNV                                                                          |                                               | 1                                                                 | AGRN        | NM_198576.3    | c.5353G>A p.(Asp1785Asn)                | Missense Variant |                                                                                 |                                                                                  | Heterozygous | Father    |
| 4~                                                                                                                                                                                                                                                         | •      |                          |                       |                                                                                     |                                                          |                                           |                  |                                                                              |                                               |                                                                   |             |                |                                         |                  |                                                                                 |                                                                                  |              |           |
| ٦-                                                                                                                                                                                                                                                         | •      | CH~                      | =                     | 1:1,333,607                                                                         | G                                                        | > A                                       | Small Variant    | SNV                                                                          |                                               |                                                                   | TAS1R3 (+2) | NM_152228.2    | c.1702G>A p.(Ala568Thr)                 | Missense Variant | (+ More)                                                                        |                                                                                  | Heterozygous | Father    |
| ٦-                                                                                                                                                                                                                                                         | •      | CH ~                     | =                     | 1 : 6,465,207                                                                       | G                                                        | > C                                       | Small Variant    | SNV                                                                          |                                               | 2                                                                 | TNFRSF25 (  | NM_148965.1    | c.176C>G p.(Ala59Gly)                   | Missense Variant | (+ More)                                                                        | 0                                                                                | Heterozygous | Mother    |
| ٦.                                                                                                                                                                                                                                                         | •      | CH ~                     | =                     | 1:10,947,99                                                                         | 8 G                                                      | > A <                                     | Small Variant    | SNV                                                                          |                                               |                                                                   | C1orf127    | NM_001170754.1 | c.2137C>T p.(Arg713Cys)                 | Missense Variant |                                                                                 |                                                                                  | Heterozygous | Mother    |
| ٦.                                                                                                                                                                                                                                                         | •      | v                        | =                     | 1:12,893,1                                                                          | 12,893,1 A                                               | CG > GCC                                  | Small Variant    | MNV                                                                          |                                               |                                                                   | PRAMEF10    | NM_001039361.4 | c.1204_1206delinsGGC p.(Arg             | Missense Variant |                                                                                 |                                                                                  | Heterozygous | Mother    |
| J.                                                                                                                                                                                                                                                         | •      |                          | =                     | 1:13,164,63                                                                         | 8 G                                                      | > A                                       | Small Variant    | SNV                                                                          |                                               |                                                                   | HNRNPCL4    | NM_001302551.1 | c.830C>T p.(Ala277Val)                  | Missense Variant |                                                                                 |                                                                                  | Homozygous   | Mother Co |
| _                                                                                                                                                                                                                                                          |        |                          |                       |                                                                                     |                                                          |                                           |                  |                                                                              |                                               |                                                                   |             |                |                                         |                  |                                                                                 |                                                                                  |              |           |
| EFF: C<br>社:: Turner: CUSS Browser<br>USS Browser<br>IGV<br>Resources へ<br>Climat 会会会。<br>Climat 会会会。<br>Climat 会会会。<br>Climate 会会会。<br>Climate 会合会。<br>Climate 会合合合。<br>Climate 合合合合合。<br>Climate 合合合合合合。<br>Climate 合合合合合合合合合合合合合合合合合合合合合合合合合合合合合合合合合合合合 |        |                          |                       | Affected<br>Genotype<br>VRF<br>Total Depth<br>Allele Depths<br>GT Quality<br>Filter | PROBAN<br>Yes<br>0/1<br>0.3548<br>31<br>11<br>43<br>PASS | 4D M4<br>No<br>0/4<br>41<br>0<br>85<br>PA |                  | FATHER<br>No<br>0/1<br>0.5778<br>45<br>26<br>47<br>PASS                      | ALL<br>AFR<br>AMR<br>ASJ<br>EAS<br>EUR<br>FIN | GnomAD<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br><br>0.00010 |             |                |                                         | Si<br>Di<br>Ad   | cceptor Gain<br>core: 1<br>stance:-2<br>cceptor Loss<br>core: 0.4<br>stance:-13 | Donor Gain<br>Score: 0<br>Distance:-12<br>Donor Loss<br>Score: 0<br>Distance:-41 |              |           |
|                                                                                                                                                                                                                                                            |        |                          | Quality Score 123 123 |                                                                                     |                                                          |                                           | 123              | 123 NPE 0.0000<br>SAS 0.0000<br>Other 0.0000<br>Hemizygotes<br>Homogygotes 0 |                                               |                                                                   |             |                |                                         |                  |                                                                                 |                                                                                  |              |           |
|                                                                                                                                                                                                                                                            |        |                          |                       |                                                                                     | CaseLog 0<br>Comments                                    |                                           | ow More) Alterna | te Allele Frequer                                                            | icy: 0.00% (0/36)                             |                                                                   |             |                |                                         |                  |                                                                                 |                                                                                  |              |           |
|                                                                                                                                                                                                                                                            |        | Variant Associations (0) |                       |                                                                                     |                                                          |                                           | Comments         |                                                                              |                                               |                                                                   |             |                | New Comment (5000 characters remaining) |                  |                                                                                 |                                                                                  |              |           |

Figure 2: Evaluate flanking sequence with SpliceAI—TruSight Software Suite includes SpliceAI for evaluating 10,000 nucleotides of flanking sequence to identify noncoding mutations resulting from splicing errors. SpliceAI scores (displayed in the variant grid and Variant Details tab) predict the likelihood of a splicing event, with values closer to 1.0 indicating higher confidence of prediction.

| LAGS                                                                                                                                                                                                        | STATUS                                                                                                                        | LINKED   | IGV                                                        | CATEGORY                                                                                                                      | POSITION                                                | GENE                                   | TRANSCRIPT                                                           | OVERLAP 🗸                                                          | VARIANT TYPE            |                                  | CONSEQUENCE           |                             | CHANGE                                    | HGVS                      | ZYGOSITY                   | INHERITED F       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------|----------------------------------|-----------------------|-----------------------------|-------------------------------------------|---------------------------|----------------------------|-------------------|
| ۵.                                                                                                                                                                                                          |                                                                                                                               | CH ~     | ≡                                                          | Small Variant                                                                                                                 | 12 : 112910827                                          | PTPN11                                 | NM_002834.4                                                          |                                                                    | SNV                     |                                  | Missense Variant      |                             | A > G                                     | c.836A>G p.(T.            | Heterozygous               | Unknown           |
| ۵.                                                                                                                                                                                                          |                                                                                                                               | CH ~     | =                                                          | Small Variant                                                                                                                 | 1 : 1268987                                             | TAS1R3 (+2                             | ) NM_152228.2                                                        | 3                                                                  | SNV                     |                                  | Missense Variant      | (+ More)                    | G > A                                     | c.1702G>A p.(.            | Heterozygous               | Unknown           |
| ۵.                                                                                                                                                                                                          | •                                                                                                                             | CH ~     | ∍                                                          | Small Variant                                                                                                                 | 2:27684643                                              | IFT172                                 | NM_015662.2                                                          | 3                                                                  | SNV                     |                                  | Missense Variant      |                             | C > T                                     | c.2176G>A p.(.            | Heterozygous               | Unknown           |
| ۵.                                                                                                                                                                                                          | •                                                                                                                             | CH ~     | =                                                          | Small Variant                                                                                                                 | 2:44040347                                              | ABCG5 (+1)                             | NM_022436.2                                                          | 3                                                                  | SNV                     |                                  | Missense Variant      | (+ More)                    | T > C                                     | c.1864A>G p.(.            | Heterozygous               | Unknown           |
| Variant                                                                                                                                                                                                     | t Details                                                                                                                     | Transcri | ot                                                         | Gene Details                                                                                                                  | CaseLog Al Varian                                       | Prioritizer A                          | activity                                                             | 12-1129108                                                         | 27-A-G PTPN11           | c.836A>G                         | p.(Tyr279Cys)         | 1                           | 12q24.13                                  | к                         | nowledge Network           | Send for Curation |
| Search Q PTPN11                                                                                                                                                                                             |                                                                                                                               |          |                                                            | CONSTRAINT METRIC                                                                                                             | S (GNOMAD)                                              |                                        | RELATED DISE                                                         | ASES                                                               |                         |                                  | PRIMATEAI             |                             |                                           |                           |                            |                   |
| AME                                                                                                                                                                                                         | ME OVERLAP The protein-tyrosine phosphatases are a highly pleomo<br>set of molecules that have a role in regulating the respo |          | the responses                                              | LOEUF: 0.135 synZ: 0.824 misZ: 3                                                                                              |                                                         |                                        | N Noonar                                                             | n syndrome-like disorde                                            | r with loose and        | agen hair                        | PrimateAl Score: 0.73 |                             |                                           |                           |                            |                   |
|                                                                                                                                                                                                             |                                                                                                                               |          | 1995). They achieve this by regulating the phosphotyrosine |                                                                                                                               |                                                         | pNull: 1.08e-13 pRec: 0.0000181 pLi: 1 |                                                                      |                                                                    | D Noonar                | n syndrome with multipl          | e lentigines          |                             |                                           |                           |                            |                   |
|                                                                                                                                                                                                             |                                                                                                                               |          |                                                            | content of specific intracellular proteins. The PTPases have<br>been grouped by virtue of the characteristic catalytic domain |                                                         |                                        |                                                                      |                                                                    |                         | D Noonar                         | n syndrome            |                             |                                           |                           |                            |                   |
|                                                                                                                                                                                                             |                                                                                                                               |          |                                                            |                                                                                                                               | es that define this family.<br>he noncatalytic domain s |                                        | DOSAGE SENSITIVITY (CLINGEN)<br>Haploinsufficiency:                  |                                                                    |                         | Di cardiofaciocutaneous syndrome |                       |                             |                                           |                           |                            |                   |
|                                                                                                                                                                                                             |                                                                                                                               |          |                                                            | degree of sequence heterogeneity. In general, however,<br>mammalian PTPases can be subdivided into 1 of 2 broad               |                                                         |                                        | sufficient evidence suggesting dosage sensitivity is associated with |                                                                    |                         | DI Costello syndrome             |                       |                             |                                           |                           |                            |                   |
|                                                                                                                                                                                                             |                                                                                                                               |          | categories: (1) trans                                      | smembrane receptor PTF                                                                                                        | ases that                                               | clinical phenotype                     |                                                                      | LEOPARD syndrome 1 A<br>Leukemia, juvenile myelomonocytic, somatic |                         |                                  |                       |                             |                                           |                           |                            |                   |
|                                                                                                                                                                                                             |                                                                                                                               |          |                                                            | intracellular PTPase                                                                                                          | plasmic catalytic domain<br>es. Included within the lat | ter category are                       | Triplosensitivity:<br>no evidence to sugg                            |                                                                    |                         |                                  |                       | est that dosage sensitivity |                                           |                           |                            |                   |
|                                                                                                                                                                                                             |                                                                                                                               |          |                                                            | sequences encode                                                                                                              | ammalian intracellular P1<br>2 tandem SRC homology      | 2 (SH2) domains                        | clinical phenotype                                                   |                                                                    |                         | Metachondro                      | matosis               |                             | AD                                        |                           |                            |                   |
|                                                                                                                                                                                                             |                                                                                                                               |          |                                                            | PTPase catalytic do                                                                                                           | the amino-terminal side o<br>omain. SH2 domains ena     | le the binding of                      |                                                                      |                                                                    |                         | Noonan syndr                     | rome 1                |                             | AD                                        |                           |                            |                   |
| thee SH2 domain-containing PTPases<br>phosphoryosine residues within protei-<br>mammalian SH2 domain-containing PT<br>PTPTIC (PTPNS). The second mammali<br>containing PTPase identified is encode<br>gene. |                                                                                                                               |          |                                                            | sidues within protein seq<br>omain-containing PTPase<br>ne second mammalian SF                                                | uences. The first<br>identified was<br>12 domain-       |                                        |                                                                      |                                                                    | LITERATUR<br>Yes / 5787 | RE SEARCH (INDICATION            | S/TOTAL)              |                             | LINKS<br>OMIM, PubMed, Ca<br>ZFIN, STRING | aseLog (156), MGI, Decipi | her, GeneReviews, Monarch, |                   |

Figure 3: Classify missense variants with PrimateAI—TruSight Software Suite includes PrimateAI for highly accurate classification of mRNA missense variants, based on a training data set of human variants and > 300K unique missense variants collected from six nonhuman primate species. The Primate AI score for a variant (displayed in the Gene Details tab) predicts the likelihood of a variant being pathogenic, with values closer to 1.0 indicating higher confidence of prediction.

ranks variants according to a proprietary algorithm, presenting the top variants, identified as either "candidate" or "most likely," for review and evaluation (Figure 4).

Emedgene applies natural language processing (NLP) to various data sources to generate a Knowledge Graph for each ranked variant. Users can explore the Knowledge Graph to understand how and why a variant is prioritized by reviewing the variant details, the respective gene in which it occurs, and associations with "clinical indications," including known diseases and both confirmed and unconfirmed phenotypes (Figure 5). Users can follow links to supporting evidence from the scientific literature and online databases for more information.

#### Example use case with Emedgene

In 2018, a laboratory analyst in the Illumina Clinical Services Laboratory received a request for WGS variant analysis for two unaffected parents and a male proband with a phenotype that included neurodevelopmental delay. Initially, manual variant filtering, prioritization, and interpretation resulted in a report with no variants identified as having associations with known diseases.

| -            | au 10200 - 2 | 1.87 3   | SK8 12   | 100                            | 0. 0.000000000000000000000000000000000 |          |                |           |              |           |     |                      |          |           |        |
|--------------|--------------|----------|----------|--------------------------------|----------------------------------------|----------|----------------|-----------|--------------|-----------|-----|----------------------|----------|-----------|--------|
| =            | Show Filters | View var | iants by | <ul> <li>Displaying</li> </ul> | 10 of 5166040 Variants.                |          |                |           |              |           |     |                      |          |           |        |
| LAGS         | STATUS       | LINKED   | IGV      | CATEGORY                       | POSITION                               | GENE     | TRANSCRIPT     | OVERLAP 🕹 | VARIANT TYPE | EMEDGE    | NE  | CONSEQUENCE          |          | MOI       | CHANGE |
| ۵.           |              | CH ~     | =        | Small Variant                  | 1:45334493                             | MUTYH    | NM_001128425.1 | 1         | SNV          | Most like | ely | Stop Gained          | (+ More) | IA RCH    | G > A  |
| □.           |              | CH ~     | =        | Small Variant                  | 1 : 45334493                           | MUTYH    | NM_001128425.1 | 1         | SNV          | Most lik  | ely | Missense Variant     | (+ More) | IA RCH    | G > C  |
| ۵.           |              | CH ~     | =        | Small Variant                  | 13:32326614                            | BRCA2    | NM_000059.3    | .1        | SNV          | Candida   | ite | Splice Donor Variant |          | IA RCH    | G > A  |
| $\square_{}$ |              | CH ~     | =        | Small Variant                  | 13:32326615                            | BRCA2    | NM_000059.3    | _1        | SNV          | Candida   | ite | Splice Donor Variant |          | IA RCH    | T > G  |
| ۵.           |              | CH ~     | =        | Small Variant                  | 20:51791262                            | SALL4    | NM_020436.4    | 1         | SNV          | Candida   | ite | Missense Variant     | (+ More) | IA NU RCH | C > G  |
|              |              | MNV ~    | =        | Small Variant                  | 2:227329764                            | MFF (+1) | NM_001277061.1 |           | SNV          | Candida   | ite | Missense Variant     | (+ More) | IA        | A > G  |
| ۵.           |              | MNV ~    | -        | Small Variant                  | 2:227329765                            | MFF (+1) | NM_001277061.1 |           | SNV          | Candida   | ite | Missense Variant     | (+ More) | IA        | G > C  |
| Π.           | •            | CH ~     | =        | Small Variant                  | 5:151049939                            | TNIP1    | NM_001252390.1 |           | Deletion     | Candida   | ite | Frameshift Variant   |          | IA NU RCH | T>-    |

Figure 4: Filter and prioritize small variants with Emedgene—Applying the Emedgene filter set runs an automated variant filtering and ranking algorithm that returns the top variants ranked as either "candidate" or "most likely," based on the likelihood that they will solve a case.



Figure 5: Knowledge Graph—The Emedgene Knowledge Graph displays information at a glance that helps users understand how and why a variant is prioritized, the variant details, the respective gene in which it occurs, and associations with "clinical indications," including known diseases and both confirmed and unconfirmed phenotypes. Knowledge Graph includes links to external online databases and the scientific literature with supporting information for the indicated associations.

After reanalysis with the Emedgene tool a year later, a variant in the thousand and one (TAO) amino acid kinase 1 (*TAOK1*) gene was prioritized. Emedgene automatically applied NLP to online databases and found a research article published in the *American Journal of Human Genetics* describing *de novo* variants in *TAOK1* associated with neurodevelopmental disorders.<sup>4</sup> Review and curation of the called variant and corresponding research article resulted in the analyst issuing an amended report (Table 1). Importantly, this result highlights the potential of machine-learning tools to enable routine, automated reanalysis of unsolved cases, which is not feasible by manual methods.

#### Table 1: Proband variant interpretation

| Variant of interest        | Interpretation                 |
|----------------------------|--------------------------------|
| <i>TAOK1</i> Small Variant | The c. 557C>T; p.Pro186Leu     |
| (c.557C>T; p.Pro186Leu)    | missense variant is classified |
| Heterozygous               | as likely pathogenic           |

### Summary

TruSight Software Suite incorporates "plug-and-play" machine-learning tools that can be run autonomously, without the need for bioinformatics or programming expertise. With these tools, users can quickly filter out millions of variants to focus on the top, candidate variants of interest for efficient and informed variant interpretation and curation.

## illumina®

1.800.809.4566 toll-free (US) | +1.858.202.4566 tel techsupport@illumina.com | www.illumina.com

© 2021 Illumina, Inc. All rights reserved. All trademarks are the property of Illumina, Inc. or their respective owners. For specific trademark information, see www.illumina.com/company/legal.html. M-GL-00008 v1.0..

#### Learn more

TruSight Software Suite, illumina.com/trusight-software-suite

## References

- 1. Schmidt B, Hildebrandt A. Deep learning in next-generation sequencing. *Drug Discov Today.* 2020;S1359-6446(20)30415-3.
- Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, et al. Predicting splicing from primary sequence with deep learning. *Cell*. 2019;176(3):535–548.
- 3. Sundaram L, Gao H, Padigepati SR, et al. Predicting the clinical impact of human mutation with deep neural networks. *Nat Genet*. 2018;50(8):1161–1170.
- Dulovic-Mahlow M, Trinh J, Kandaswamy KK, et al. De novo variants in TAOK1 cause neurodevelopmental disorders. Am J Hum Genet. 2019;105(1):213–220.